Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increase in the bulk density of a Grey Clay subsoil by infilling of cracks by topsoil

Identifieur interne : 002113 ( Istex/Curation ); précédent : 002112; suivant : 002114

Increase in the bulk density of a Grey Clay subsoil by infilling of cracks by topsoil

Auteurs : A. Bruand ; H. Cochrane ; P. Fisher [Australie] ; R. J. Gilkes

Source :

RBID : ISTEX:AE546E2C2F5BDA0677FB9BFFCB83E48C47744527

Descripteurs français

English descriptors

Abstract

Increases in soil bulk density beyond the optimum reduce land productivity and, where soil is affected, may be difficult to remedy. Elucidating the mechanisms causing compaction is a prerequisite to sustainable management of fragile soils. We examined a dense grey soil in Western Australia in which the dominant physical feature of the subsoil was coarse prismatic structure. The prisms were approximately hexagonal in horizontal section with an average side length of 0.66 m. The top of the prisms reached to within approximately 0.07 m of the soil surface, their sides becoming indistinguishable below approximately 0.9 m. The vertical faces of the prisms were coated by material similar in composition to the topsoil and separated from it by a transition material of intermediate composition. Soil within the prisms had a bulk density at maximum swelling which reached a maximum of 1.86 g cm−3 in the upper subsoil. We investigate the hypothesis that such a high bulk density could have developed as a result of a simple three‐stage process: (i) soil shrinkage as the profile dries over summer leading to widening of cracks between prismatic peds, (ii) infilling of cracks by detached topsoil which adds to coating thickness, and (iii) swelling during the winter, now partially restricted by coating material, leading to compression of the prismatic peds. We present a model which accounts quantitatively for this process and explain how soil physical characteristics might facilitate it. The dense upper subsoil (7–60 cm) limits root penetration and prolongs the period of transient waterlogging of the topsoil during winter, adversely affecting subsequent crop performance. Our work suggests that stabilizing surface soil to minimize soil detachment could be a relevant management objective on these structurally unstable soils in order to prevent subsoil compaction.

Url:
DOI: 10.1046/j.1365-2389.2001.t01-1-00365.x

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:AE546E2C2F5BDA0677FB9BFFCB83E48C47744527

Curation

No country items

A. Bruand
<affiliation>
<mods:affiliation>Unité de Science du Sol, INRA‐Orléans, BP 20619, 45166 Olivet Cedex, France, and</mods:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
H. Cochrane
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
R. J. Gilkes
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Increase in the bulk density of a Grey Clay subsoil by infilling of cracks by topsoil</title>
<author>
<name sortKey="Bruand, A" sort="Bruand, A" uniqKey="Bruand A" first="A." last="Bruand">A. Bruand</name>
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
<affiliation>
<mods:affiliation>Unité de Science du Sol, INRA‐Orléans, BP 20619, 45166 Olivet Cedex, France, and</mods:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Cochrane, H" sort="Cochrane, H" uniqKey="Cochrane H" first="H." last="Cochrane">H. Cochrane</name>
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fisher, P" sort="Fisher, P" uniqKey="Fisher P" first="P." last="Fisher">P. Fisher</name>
<affiliation wicri:level="1">
<mods:affiliation>Agriculture Western Australia, Katanning, WA 6317, Australia</mods:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture Western Australia, Katanning, WA 6317</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gilkes, R J" sort="Gilkes, R J" uniqKey="Gilkes R" first="R. J." last="Gilkes">R. J. Gilkes</name>
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AE546E2C2F5BDA0677FB9BFFCB83E48C47744527</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1046/j.1365-2389.2001.t01-1-00365.x</idno>
<idno type="url">https://api.istex.fr/document/AE546E2C2F5BDA0677FB9BFFCB83E48C47744527/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002113</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002113</idno>
<idno type="wicri:Area/Istex/Curation">002113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Increase in the bulk density of a Grey Clay subsoil by infilling of cracks by topsoil</title>
<author>
<name sortKey="Bruand, A" sort="Bruand, A" uniqKey="Bruand A" first="A." last="Bruand">A. Bruand</name>
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Unité de Science du Sol, INRA‐Orléans, BP 20619, 45166 Olivet Cedex, France, and</mods:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Cochrane, H" sort="Cochrane, H" uniqKey="Cochrane H" first="H." last="Cochrane">H. Cochrane</name>
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fisher, P" sort="Fisher, P" uniqKey="Fisher P" first="P." last="Fisher">P. Fisher</name>
<affiliation wicri:level="1">
<mods:affiliation>Agriculture Western Australia, Katanning, WA 6317, Australia</mods:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture Western Australia, Katanning, WA 6317</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gilkes, R J" sort="Gilkes, R J" uniqKey="Gilkes R" first="R. J." last="Gilkes">R. J. Gilkes</name>
<affiliation>
<mods:affiliation>Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia,</mods:affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">European Journal of Soil Science</title>
<title level="j" type="alt">EUROPEAN JOURNAL OF SOIL SCIENCE</title>
<idno type="ISSN">1351-0754</idno>
<idno type="eISSN">1365-2389</idno>
<imprint>
<biblScope unit="vol">52</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="37">37</biblScope>
<biblScope unit="page" to="47">47</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2001-03">2001-03</date>
</imprint>
<idno type="ISSN">1351-0754</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1351-0754</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropic</term>
<term>Anisotropic shrinkage</term>
<term>Apparente</term>
<term>Argile grise</term>
<term>Australian journal</term>
<term>Biological activity</term>
<term>Blackwell science</term>
<term>Bruand</term>
<term>Bulk densities</term>
<term>Bulk density</term>
<term>Bulk density increase</term>
<term>Bulk soil</term>
<term>Cation</term>
<term>Cation exchange capacity</term>
<term>Clay fraction</term>
<term>Clay minerals</term>
<term>Clay soil</term>
<term>Clayey</term>
<term>Clayey subsoil</term>
<term>Coating material</term>
<term>Coating thickness</term>
<term>Coating transition prism</term>
<term>Crack width</term>
<term>Densite</term>
<term>Densite apparente</term>
<term>Different subsoil horizons</term>
<term>Duplex soils</term>
<term>Electron microscopy</term>
<term>Equivalent crack width</term>
<term>European journal</term>
<term>Exchangeable cations</term>
<term>Grey clay soils</term>
<term>Grey clays</term>
<term>Hexagon side length</term>
<term>Horizontal plane</term>
<term>Horizontal section</term>
<term>Isotropic shrinkage</term>
<term>Kaolinite</term>
<term>Katanning</term>
<term>Mass loss</term>
<term>Mineralogical composition</term>
<term>Organic carbon</term>
<term>Outer coating</term>
<term>Particle density</term>
<term>Partie superieure</term>
<term>Peds</term>
<term>Perth</term>
<term>Plant nutrition</term>
<term>Prism</term>
<term>Prismatic peds</term>
<term>Sampling depth</term>
<term>Shrinkage</term>
<term>Silt contents</term>
<term>Singh gilkes</term>
<term>Soil bulk density</term>
<term>Soil groups</term>
<term>Soil kaolinites</term>
<term>Soil science</term>
<term>Soil surface</term>
<term>Soil survey staff</term>
<term>Southwestern australia</term>
<term>Subsoil</term>
<term>Subsoil peds</term>
<term>Surface area</term>
<term>Surface soil</term>
<term>Theoretical variation</term>
<term>Topsoil</term>
<term>Topsoil material</term>
<term>Transient waterlogging</term>
<term>Transition material</term>
<term>Transitional zone</term>
<term>Translocated topsoil</term>
<term>Undisturbed samples</term>
<term>Upper subsoil</term>
<term>Water content</term>
<term>Water content changes</term>
<term>Wcrack</term>
<term>Western australia</term>
<term>Western australian society</term>
<term>Western australian wheatbelt</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anisotropic</term>
<term>Anisotropic shrinkage</term>
<term>Apparente</term>
<term>Argile grise</term>
<term>Australian journal</term>
<term>Biological activity</term>
<term>Blackwell science</term>
<term>Bruand</term>
<term>Bulk densities</term>
<term>Bulk density</term>
<term>Bulk density increase</term>
<term>Bulk soil</term>
<term>Cation</term>
<term>Cation exchange capacity</term>
<term>Clay fraction</term>
<term>Clay minerals</term>
<term>Clay soil</term>
<term>Clayey</term>
<term>Clayey subsoil</term>
<term>Coating material</term>
<term>Coating thickness</term>
<term>Coating transition prism</term>
<term>Crack width</term>
<term>Densite</term>
<term>Densite apparente</term>
<term>Different subsoil horizons</term>
<term>Duplex soils</term>
<term>Electron microscopy</term>
<term>Equivalent crack width</term>
<term>European journal</term>
<term>Exchangeable cations</term>
<term>Grey clay soils</term>
<term>Grey clays</term>
<term>Hexagon side length</term>
<term>Horizontal plane</term>
<term>Horizontal section</term>
<term>Isotropic shrinkage</term>
<term>Kaolinite</term>
<term>Katanning</term>
<term>Mass loss</term>
<term>Mineralogical composition</term>
<term>Organic carbon</term>
<term>Outer coating</term>
<term>Particle density</term>
<term>Partie superieure</term>
<term>Peds</term>
<term>Perth</term>
<term>Plant nutrition</term>
<term>Prism</term>
<term>Prismatic peds</term>
<term>Sampling depth</term>
<term>Shrinkage</term>
<term>Silt contents</term>
<term>Singh gilkes</term>
<term>Soil bulk density</term>
<term>Soil groups</term>
<term>Soil kaolinites</term>
<term>Soil science</term>
<term>Soil surface</term>
<term>Soil survey staff</term>
<term>Southwestern australia</term>
<term>Subsoil</term>
<term>Subsoil peds</term>
<term>Surface area</term>
<term>Surface soil</term>
<term>Theoretical variation</term>
<term>Topsoil</term>
<term>Topsoil material</term>
<term>Transient waterlogging</term>
<term>Transition material</term>
<term>Transitional zone</term>
<term>Translocated topsoil</term>
<term>Undisturbed samples</term>
<term>Upper subsoil</term>
<term>Water content</term>
<term>Water content changes</term>
<term>Wcrack</term>
<term>Western australia</term>
<term>Western australian society</term>
<term>Western australian wheatbelt</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Science des sols</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increases in soil bulk density beyond the optimum reduce land productivity and, where soil is affected, may be difficult to remedy. Elucidating the mechanisms causing compaction is a prerequisite to sustainable management of fragile soils. We examined a dense grey soil in Western Australia in which the dominant physical feature of the subsoil was coarse prismatic structure. The prisms were approximately hexagonal in horizontal section with an average side length of 0.66 m. The top of the prisms reached to within approximately 0.07 m of the soil surface, their sides becoming indistinguishable below approximately 0.9 m. The vertical faces of the prisms were coated by material similar in composition to the topsoil and separated from it by a transition material of intermediate composition. Soil within the prisms had a bulk density at maximum swelling which reached a maximum of 1.86 g cm−3 in the upper subsoil. We investigate the hypothesis that such a high bulk density could have developed as a result of a simple three‐stage process: (i) soil shrinkage as the profile dries over summer leading to widening of cracks between prismatic peds, (ii) infilling of cracks by detached topsoil which adds to coating thickness, and (iii) swelling during the winter, now partially restricted by coating material, leading to compression of the prismatic peds. We present a model which accounts quantitatively for this process and explain how soil physical characteristics might facilitate it. The dense upper subsoil (7–60 cm) limits root penetration and prolongs the period of transient waterlogging of the topsoil during winter, adversely affecting subsequent crop performance. Our work suggests that stabilizing surface soil to minimize soil detachment could be a relevant management objective on these structurally unstable soils in order to prevent subsoil compaction.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002113 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 002113 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:AE546E2C2F5BDA0677FB9BFFCB83E48C47744527
   |texte=   Increase in the bulk density of a Grey Clay subsoil by infilling of cracks by topsoil
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024